南昌三甲基氢醌乙酸酯和异植物醇

时间:2021年04月10日 来源:

三甲基氢醌,也称2,3,5-三甲对苯二酚(英文名称:2,3,5-trimethylhydroquinone,简称TMHQ),是合成维生素E(VE)的重要中间体,它与异植物醇缩合生产维生素E。三甲基氢醌是合成维生素E的主要原料之一,它和异植物醇反应合成维生素E。三甲基氢醌的生产有化学氧化-还原、异佛尔酮氧化-重拍、催化氧化-还原等多条工艺路线,其中催化氧化-还原工艺是目前国外应用较多的三甲基氢醌生产工艺,很多国外企业均采用此工艺。催化氧化-还原工艺与化学氧化-还原工艺相比,具有产品收率高、纯度高、工艺条件弹性高、废酸、废渣排放量小等优点。所以在近十几年,甚至二十几年内,2,3,5-三甲基氢醌的未来市场并不会处于饱和状态。南昌三甲基氢醌乙酸酯和异植物醇

南昌三甲基氢醌乙酸酯和异植物醇,三甲基氢醌

可以肯定的是,去甲基化反应需要更高的活化能。这可以解释为什么更高的温度促进了去甲基化并降低了三甲基氢醌的加氢产率。搅拌速度的影响:在氢化过程中当搅拌速度从500r/min变化到900r/min时,TMBQ的高转化率没有明显的变化。然而,随着搅拌速度从500r/min转速增加到800r/min,TMHQ的加氢收率逐渐增加。当其达到900rpm时,显示出TMHQ的氢化产率明显降低。它表明选择性降低。由于快速搅拌,催化剂表面上过量活泼的氢被认为会导致更多的副反应。此外,较高的搅拌速度可以推动催化剂粘附到高压釜顶部,并导致催化剂的磨损。三甲基氢醌二醋酸酯批发产品贮运:贮存于阴凉、干燥处。

南昌三甲基氢醌乙酸酯和异植物醇,三甲基氢醌

三甲基氢醌的加氢收率先升高后略有下降。较高负载量的催化剂能够通过促进氢化和压制去甲基化反应来增加TMHQ产率。随着催化剂负载的增加,通过Pd活性位点的增加促进了吸附。然而,较高的催化活性可能会引起由于苯基的氢化而导致选择性降低。较高量的催化剂将带来更高的反应速率和更短的反应时间。观察到当催化剂负载量从0.71g变化到0.88g时,反应时间几乎没有减少。但是,由于使用贵金属催化剂,Pd/C用量的增加将极大地提高生产成本。因此,催化剂负载量为0.71g是合适的。

催化剂失活的一个主要原因是催化剂表面沉积了TMHQ和少量的2,3,5-三甲基苯醌。2,3,5-三甲基氢醌,简称三甲基氢醌(TMHQ,又名2,3,5-三甲基对苯二酚,是合成维生素E的重要中间体,与异植物醇反应得到维生素E。此外,它还可配制或合成杀虫剂,抗氧剂,防腐剂,草地生长调节剂,香料和香水的调和组分。随着维生素E在医疗,食品,饲料领域中的普遍应用,三甲基氢醌的需求量也随之增加。传统的合成三甲基氢醌的方法主要采用两种工艺,一种是采用偏三甲苯法,由偏三甲苯经磺化,硝化,还原,氧化,再次还原成TMHQ;另一种是间甲酚甲基化法,以间甲酚为原料,在催化剂作用下和甲醇反应生成2,3,6-三甲基苯酚,进而氧化生成2,3,5-三甲基苯醌,还原而得到TMHQ.前者虽然原料价廉易得,但是工艺路线繁琐,副产物多,污染大;后者虽然合成路线简单,但是间甲酚原料昂贵,成本高,且大多需要进口。结晶状固体受热升华、受潮易变黑。

南昌三甲基氢醌乙酸酯和异植物醇,三甲基氢醌

催化剂活性较好,可使99%的TMP转化为TMBQ,二次循环使用时,TMP的选择性仍可达到86%,在接下来的三次循环使用中,其选择性都保持在80%以上。s异佛尔酮氧化法:原料首先聚合为异佛尔酮,异佛尔酮氧化为氧代异佛尔酮(KIP),KIP酰化、重排为三甲基氢醌二乙酸酯(DMHQ-DA),再经皂化、水解得到TMHQ(Scheme7)。此方法原料廉价易得、生产工艺简单、对环境污染小、便于规模化生产,是一种高效经济、绿色环保的生产工艺。该工艺的研究者主要集中在维生素E出口量较大的德国和荷兰等国家,并在中国申请了大量**,势必会增加国内维生素E的生产成本。合成方法:1,2,4-三甲苯经磺化、硝化、还原、氧化得到三甲基氢醌。浙江三甲基氢醌 厂家

2,3,5-三甲基氢醌二酯在有机溶剂的浓度为0.5~2.5g/ml。南昌三甲基氢醌乙酸酯和异植物醇

一种制备2,3,5三甲基氢醌二酯的方法。包括以下步骤:氧代异佛尔酮和乙酸酐在改性环糊精负载固体酸催化下,重排酰化制备2,3,5三甲基氢醌二酯。所述改性环糊精负载固体酸为聚烯丙基胺改性羧甲基β环糊精,反应条件温和,氧代异佛尔酮转化率及产物选择性高,催化剂能够重复利用,能克服现有制备技术中选择性差,设备腐蚀严重,工艺操作复杂等缺陷。目的:对合成维生素E重要中间体三甲基氢醌工艺中所含的2个主要未知杂质进行结构解析。方法:采用等度洗脱高效液相色谱分析方法确定三甲基氢醌的杂质谱;通过两次半制备色谱方法及梯度洗脱分离出未知杂质1和杂质3;非挥发性目标物洗脱液浓缩采用减压旋转蒸发方法,挥发性目标物洗脱物采用固相萃取分离技术。南昌三甲基氢醌乙酸酯和异植物醇

信息来源于互联网 本站不为信息真实性负责