南昌高精度电流传感器

时间:2023年08月11日 来源:

y方向)上第1以及第2流路21、22在+y侧的端部连结,在-y侧的端部分离。如图11所示,流经导体2a的电流若在第1流路21中沿+y朝向流动,则在+y侧的端部迂回,由此在第2流路22中沿-y朝向流动。如图11所示,电流所引起的信号磁场b1、b2例如在z方向上的导体2a的相同侧(例如+z侧)在第1流路21附近的区域r10和第2流路22附近的区域r20彼此具有反相。在本变形例中,例如在电流传感器1安装于导体2a的状态下,两个磁传感器11、12分别配置在第1流路21附近的区域r10和第2流路22附近的区域r20。由此,即使在本变形例中,也与上述各实施方式同样地,能够使电流传感器1中的s/n比良好从而提高电流的检测精度。图12示出被电流传感器1检测的电流的流路为一个导体2b的变形例2。图12的(a)、(b)分别在xz平面上的导体2b的剖视图中示出各磁传感器11、12的配置例。在图12的例子中,在导体2b的长度方向(y方向)上流过电流,电流所引起的信号磁场b1在xz平面上环绕导体2b的周围。例如,如图12的(a)所示,信号磁场b1在z方向上的导体2b的+z侧的区域r11和-z侧的区域r21彼此具有反相。在本变形例中,例如在电流传感器1安装于导体2b的状态下,两个磁传感器11、12分别配置在+z侧的区域r11和-z侧的区域r21。此时。因此可以精确地反映出被测电流的变化情况。南昌高精度电流传感器

南昌高精度电流传感器,电流传感器

本发明涉及基于由电流产生的磁场来检测电流的电流传感器。背景技术:已知利用对磁场进行感测的磁传感器来检测电流的电流传感器(例如**文献1、2)。**文献1公开了一种以抑制干扰磁场的影响所造成的测定精度的下降为目的的电流传感器。**文献1的电流传感器具备第1磁传感器以及第2磁传感器和与第1磁传感器以及第2磁传感器的输出端子连接的运算装置。电流传感器的运算装置算出第1磁传感器的输出与第2磁传感器的输出之差。**文献2公开了一种利用了将磁场变换为电信号的电流测定电路的差动型的电流传感器。**文献2的电流传感器具备两个电流测定电路和三个运算放大器。各个电流测定电路具有两个输出端子。一个电流测定电路的输出端子分别与一个运算放大器的同相输入端子以及反相输入端子连接。这样的两个运算放大器的输出端子分别与其余的一个运算放大器的同相输入端子以及反相输入端子连接。在先技术文献**文献**文献1:日本**5544502号说明书**文献2:国际公开第2014/006914号技术实现要素:发明要解决的课题本发明的目的在于,提供一种在基于由电流产生的磁场来检测电流的电流传感器中能够降低外部磁场的影响的电流传感器。兰州普乐锐思电流传感器设计标准霍尔传感器与电流互感器的不同之处在于。

南昌高精度电流传感器,电流传感器

    传感器信号s1m是第3传感器信号的一例,传感器信号s1p是第4传感器信号的一例。本变形例中的磁传感器11、12也可以从实施方式1变更物理上的灵敏度轴的方向等而构成。图9示出变形例2涉及的电流传感器1c的结构。本变形例的电流传感器1c在与实施方式1的电流传感器1同样的结构中,具备对第1以及第2运算信号so1、so2的加法进行运算的第3运算部33a。第3运算部33a例如由加法器构成。在本变形例中,磁传感器11和磁传感器12分别与实施方式1同样地是第1磁传感器和第2磁传感器的一例。如图9所示,在本变形例的电流传感器1c中,第1运算部31与实施方式1同样地在各输入端子与两个磁传感器11、12连接(参照图4)。另一方面,第2运算部32在正输入端子与磁传感器12的传感器信号s2p(第4传感器信号)的输出端子连接,在负输入端子与磁传感器11(第2传感器信号)的传感器信号s1m的输出端子连接。第1以及第2运算部31、32基于所输入的信号,进行与实施方式1同样的运算来生成第1以及第2运算信号so1、so2。第3运算部33a对第1以及第2运算信号so1、so2的加法进行运算,算出输出信号sout。由此,输出信号sout与式(7a)同样地算出。如以上那样,在本变形例涉及的电流传感器1c中。

δs1=δsg+δnz…(8)δs2=δsg-δnz…(9)根据上式(7a)、(8)、(9),在输出信号sout中,能够在两个磁传感器11、12的信号差δs1、δs2间消除外部磁场所引起的噪声分量δnz。2-2-1.关于外部磁场耐性在如以上那样的电流传感器1中,关于使输出信号sout不根据外部磁场而变动的外部磁场耐性,利用图6进行说明。图6是用于说明各种电流传感器中的外部磁场耐性的图。图6的(a)示出具备两个磁传感器11’、12’的典型的电流传感器1x的结构例。本例的电流传感器1x具备*与一个磁传感器11’连接的运算部31’、和*与另一个磁传感器12’连接的运算部32’。因此,各个运算部31’、32’*输入两个磁传感器11’、12’的一方的传感器信号并分别进行差动放大。在如上述那样的电流传感器1x中,对各磁传感器11’、12’的信号差δs1、δs2乘以不同的增益a1’、a2’来生成输出信号sout’。因此,在各个增益a1’、a2’产生偏差的情况下,各信号差δs1、δs2中包含的噪声分量δnz不被抵消,外部磁场耐性会下降。例如,可设想各个增益a1、a2根据各个运算部31’、32’间的温度偏差、制造偏差而产生偏差。相对于此,本实施方式涉及的电流传感器1通过将第1以及第2运算部31、32双方与各磁传感器11、12连接。避免长时间过载运行,以免损坏放大器管或磁补偿类型产品。

南昌高精度电流传感器,电流传感器

例如顺时针方向)。由此,如图4所示,在第1以及第2流路21、22间的第1流路21附近的区域r1和第2流路22附近的区域r2,通过各自的信号磁场b1、b2的x分量彼此成为相反朝向。因此,在本实施方式的电流传感器1中,在如上述那样的第1流路21附近的区域r1配置一个磁传感器11,在第2流路22附近的区域r2配置另一个磁传感器12。由此,在两个磁传感器11、12会输入彼此反相的信号磁场b1、b2。在此,可设想在输入到各磁传感器11、12的磁场中,不*包含信号磁场b1、b2,还包含如干扰磁场那样的噪声。可认为这样的噪声通过使两个磁传感器11、12的配置位置接近从而对各磁传感器11、12以同相(相同朝向并且同等程度的大小)被输入。因此,在本实施方式涉及的电流传感器1中,运算装置3对两个磁传感器11、12的感测结果的差动放大进行运算,算出表示电流的检测结果的输出信号sout。由此,能够将各个磁传感器11、12的感测结果中可能以同相包含的噪声抵消,使基于信号磁场b1、b2的电流的检测精度良好。以下,对电流传感器1的动作的详情进行说明。2-2.动作的详情关于本实施方式涉及的电流传感器1的动作的详情,利用图5进行说明。图5是用于说明电流传感器1的动作的图。电流传感器的发展经历了多个阶段。徐州高稳定性电流传感器发展现状

推动电流传感器向更高性能、更高效、更智能的方向发展。南昌高精度电流传感器

    基于传感器调整部35的调整也可以不特别依赖于温度检测部34的检测结果。运算调整部36例如包含对第3运算部33的增益a3进行调整的增益调整电路。运算调整部36基于温度检测部34对温度的检测结果,对第3运算部33的增益a3进行调整,使得对输出信号sout进行温度补偿。在此基础上或者取而代之,运算调整部36还可以对第1以及/或者第2运算部31、32的增益a1、a2进行调整。此外,运算调整部36也可以包含对第1~第3运算部31~33的偏移进行调整的偏移调整电路等。如以上那样,本实施方式涉及的电流传感器1a还具备温度检测部34和作为调整部的一例的运算调整部36。温度检测部34对周围的温度进行检测。运算调整部36根据由温度检测部34检测出的温度,对输出信号sout进行调整。由此,能够抑制相对于周围的温度的电流传感器sorut的温度变动,能够使电流传感器1a对电流的检测精度良好。此外,电流传感器1a中的调整部不限于运算调整部36,例如也可以是传感器调整部35。例如,也可传感器调整部35基于温度检测部34的检测结果来进行各磁传感器11、12的调整,从而对输出信号sout进行调整。(其他实施方式)在上述的各实施方式1、2中。南昌高精度电流传感器

无锡纳吉伏科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在江苏省等地区的电工电气行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**无锡纳吉伏科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

热门标签
信息来源于互联网 本站不为信息真实性负责