南昌自动化射频参数测试

时间:2023年11月04日 来源:

现代对于射频测试中圆晶探针的设计将测试信号从一个三维媒质(同轴电缆或矩形波导)转换到两维(共面)探针的接触上。这种操作需要对传输媒质的特性阻抗Z0进行仔细的处理,并且要在不同传播模式之间进行电磁能量的正确转换。虽然晶片探针的输入是一个标准化同轴或波导界面,但它的输出(探针极尖)则可以实现不同的设计概念。这些界面,特别是探针极尖,会将不连续性带入到测量信号路径中。这种不连续性本身会产生高阶传播模。因此,圆晶探针和DUT激励必须只能支持单个准-TEM传。射频测试设备主要由测试仪表、屏蔽箱、测试软件等部分构成。南昌自动化射频参数测试

射频

射频测试是产品研发生产过程中保障其通信质量的关键测试。常见的通信射频检测技术有两种,一种是通信射频传导测试,即通过射频发射端口直接引出射频线缆连接测试仪器直接测量,也叫通信射频直连测试。一种是OTA(Over The Air)测试,是通信设备的无线电射频信号质量通过整机辐射的方式进行测试。 OTA(Over The Air)“空口测试”是由CTIA(Cellular Telecommunication and Internet Association)早制定的射频测试相关标准,与射频传导测试相比,OTA测试将被测件的射频模组、天线、外壳等作为一个整体,着重进行整机辐射/接收性能测试,测试结果更接近产品实际使用性能。主要包括有源和无源无线通讯产品的测试,测试项目包含:全向辐射功率(TRP)、全向接收灵敏度(TIS)、整机2D/3D辐射方向图、天线增益(Gain)、天线效率等。东莞蓝牙耳机射频模块测试射频测试的前端各种器件与基带一起配合工作,共同决定了手机的通信模式、能力及性能。

南昌自动化射频参数测试,射频

射频测试中射频探针的基本要求和工作原理:1)探针的50-Ω平面传输线应当直接与DUT压点相接触而不用接触导线。对于微带线和随后的共面探针设计,探针的接触是用小的金属球来实现的,这个金属球要足够大以保证可靠且可重复性的接触。2)为了能同时接触到DUT的信号压点和接地压点,需要将探针倾斜。这个过程被称为“探针的平面化”。3)探针的接触重复性比同轴连接器的可重复性要好得多。便于进行探针极尖和在片标准及专门校准方法的开发。4)具有很高重复性的接触可以进行探针的准确校准并将测量参考平面移向其极尖处。来自探针线和到同轴连接器的过渡所产生的探针的损耗及反射是通过由射频电缆和连接器的误差相类似的方式而抵消的。5)由于其很小的几何尺寸,人们可以假设平面标准件的等效模型纯粹是集总式的。此外,人们可以从标准件的几何尺寸来很容易地预测模型参数。

在射频连接器中RF是短期的射频。RF是与无线电波传播相关的电磁频谱内的任何频率。当RF电流被提供给天线时,产生电磁场,然后该电磁场能够通过空间传播。许多无线技术都基于RF场传播。这些频率构成电磁辐射光谱的一部分。电磁辐射由以光速在空间中一起移动(即辐射)的电能和磁能的波组成。总之,所有形式的电磁能被称为电磁波谱。发射天线发射的无线电波和微波是电磁能的一种形式。通常,术语电磁场或射频(RF)场可用于指示电磁或RF能量的存在。RF场具有电和磁分量(电场和磁场),并且通常方便的是以特定于每个分量的单位表示给定位置处的RF环境的强度。例如,单位“伏特每米”(V/m)用于测量电场强度,单位“安培每米”(A/m)用于表示磁场强度。手机需要支持更多的通信频段,也就需要更多的射频前端器件。射频技术和射频测试也就变得重要起来。

南昌自动化射频参数测试,射频

下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了特有性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W、mW、dBm。频谱分析仪和功率计都是可以测量射频功率的,功率计又分为吸收式功率计与通过式功率计两种。同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。射频功率的测量方法有三种:频谱分析仪测量;吸收式功率测量;通过式功率测量。射频(RF)又称射频电流,表示可以辐射到空间的电磁频率,频率范围在300kHz~300GHz之间。东莞蓝牙耳机射频模块测试

射频测试探针和天线所适用的测试类型不同,但是两者在射频设备和元件的特性、一致性和质量测试中都很重要。南昌自动化射频参数测试

早起在射频探针出现之前,由于没有一种能够在无需安装或贴合状态下对单片微波集成电路(MMIC)装置进行测试的简便方法,因此测试过程常常使得电路完整性遭到破坏,引发各种问题。早期的射频探针使用的是共面陶瓷材料,而陶瓷不能太弯曲,因而压触的弹性范围并不大,同时支持的射频频率也较低,首先出现的探针只覆盖到18GHz。在差不多三十年的时间里,射频探针技术便取得了长足的进步,从低频测量到适用多种应用场合的商用方案:如在110GHz高频和高温环境进行阻抗匹配,多端口,差分和混合信号的测量装置,连续波模式中直到60W的高功率测量,以及直到1.1THz的太赫兹应用,都能见到射频探针的身影。南昌自动化射频参数测试

信息来源于互联网 本站不为信息真实性负责